Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 27, 2026
-
Zaza, Gianluca; Gallo, Crescenzio (Ed.)(1) Background: With technological advancements, the integration of wireless sensing and artificial intelligence (AI) has significant potential for real-time monitoring and intervention. Wireless sensing devices have been applied to various medical areas for early diagnosis, monitoring, and treatment response. This review focuses on the latest advancements in wireless, AI-incorporated methods applied to clinical medicine. (2) Methods: We conducted a comprehensive search in PubMed, IEEEXplore, Embase, and Scopus for articles that describe AI-incorporated wireless sensing devices for clinical applications. We analyzed the strengths and limitations within their respective medical domains, highlighting the value of wireless sensing in precision medicine, and synthesized the literature to provide areas for future work. (3) Results: We identified 10,691 articles and selected 34 that met our inclusion criteria, focusing on real-world validation of wireless sensing. The findings indicate that these technologies demonstrate significant potential in improving diagnosis, treatment monitoring, and disease prevention. Notably, the use of acoustic signals, channel state information, and radar emerged as leading techniques, showing promising results in detecting physiological changes without invasive procedures. (4) Conclusions: This review highlights the role of wireless sensing in clinical care and suggests a growing trend towards integrating these technologies into routine healthcare, particularly patient monitoring and diagnostic support.more » « lessFree, publicly-accessible full text available March 1, 2026
-
De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The inaugural AI4EIC Hackathon unfolded as a high-point satellite event during the second AI4EIC Workshop at William & Mary. The workshop itself boasted over two hundred participants in a hybrid format and delved into the myriad applications of Artificial Intelligence and Machine Learning (AI/ML) for the Electron-Ion Collider (EIC). This workshop aimed to catalyze advancements in AI/ML with applications ranging from advancements in accelerator and detector technologies—highlighted by the ongoing work on the ePIC detector and potential development of a second detector for the EIC—to data analytics, reconstruction, and particle identification, as well as the synergies between theoretical and experimental research. Complementing the technical agenda was an enriched educational outreach program that featured tutorials from leading AI/ML experts representing academia, national laboratories, and industry. The hackathon, held on the final day, showcased international participation with ten teams from around the globe. Each team, comprising up to four members, focused on the dual-radiator Ring Imaging Cherenkov (dRICH) detector, an integral part of the particle identification (PID) system in ePIC. The data for the hackathon were generated using the ePIC software suite. While the hackathon presented questions of increasing complexity, its challenges were designed with deliberate simplifications to serve as a preliminary step toward the integration of machine learning and deep learning techniques in PID with the dRICH detector. This article encapsulates the key findings and insights gained from this unique experience.more » « less
An official website of the United States government
